Dixmier traces as singular symmetric functionals and applications to measurable operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two variables functionals and inequalities related to measurable operators

In this paper, we introduce two variables norm functionals of τ-measurable operators and establish their joint log-convexity. Applications of this log-convexity will include interpolated Young, Heinz and Trace inequalities related to τ-measurable operators. Additionally, interpolated versions and their monotonicity will be presented as well.

متن کامل

Spectral Flow and Dixmier Traces

We obtain general theorems which enable the calculation of the Dixmier trace in terms of the asymptotics of the zeta function and of the heat operator in a general semi-finite von Neumann algebra. Our results have several applications. We deduce a formula for the Chern character of an odd L-summable Breuer-Fredholm module in terms of a Hochschild 1-cycle. We explain how to derive a Wodzicki res...

متن کامل

Dixmier traces and coarse multifractal analysis

We show how multifractal properties of a measure supported by a fractal F ⊆ [0, 1] may be expressed in terms of complementary intervals of F and thus in terms of spectral triples and the Dixmier trace of certain operators. For self-similar measures this leads to a non-commutative integral over F equivalent to integration with respect to an auxiliary multifractal measure.

متن کامل

Toeplitz and Hankel Operators and Dixmier Traces on the unit ball of C

We compute the Dixmier trace of pseudo-Toeplitz operators on the Fock space. As an application we find a formula for the Dixmier trace of the product of commutators of Toeplitz operators on the Hardy and weighted Bergman spaces on the unit ball of C. This generalizes an earlier work of Helton-Howe for the usual trace of the anti-symmetrization of Toeplitz operators.

متن کامل

Complex Symmetric Operators and Applications

We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, selfadjoint extensions of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2005

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2005.01.002